High Hopes Project – When we launch you can follow the flight live! Here’s how

Find out more about this project here.

Our launch has been delayed until June 5th and maybe not until the following week because of weather conditions. When we launch, a communications payload keeps us in touch with the balloon’s progress. Besides 2 SPOT Trackers that use satellite technology to pinpoint the balloons location once it lands (2 in case one fails)  a HAM radio transceiver sends out a signal that we (and you) can watch live on a Google map. To do so go to aprs.fi on the web and type in KE7BQV-14 (See image below) AFTER WE LAUNCH. You’ll have to keep checking back here to see when we plan to launch. We’ll give you at least a day before notice.

After we launch, about every minute or so, a new red dot will appear on the map tracing the flight.

The image above traces a finished flight (usually about 90 tp 120 minutes) and demonstrates the box that opens when you click on a red dot – clicking on the red dots can be a bit frustrating at times, you might have to try more than once and be careful to click right on the dot. Note the information provided: Date and time, speed, compass heading (in this case 265 degrees), and altitude in feet.

In addition, I’ll be tweeting out progress as much as possible: @bcrosby

Do People Really Think Earth Might Be Flat?

Just 66% of millennials firmly believe that the earth is round

Had to post this. As someone who delivers professional development in STEM (science, technology, engineering and math) this study’s findings don’t surprise me (link to the study YouGov site). Science and social studies and a raft of other subjects important to understanding our world and how things work have been cut or de-emphasized for years, although they are making somewhat of a comeback, seems like we are reaping what we sowed. I’m not sure, if the conclusions here are true, that this reflects cutting science from the curriculum as the main culprit in this lack of understanding, but could be!

 

Learning is messy!

Our Annual High Altitude Balloon Project Is Coming Together

We'll launch your "High Hopes" for the world!

NOTE: If you’d like to be part of this project you and your students can send us their “High Hopes” for their school, community and the world and we will launch them up high to 100,000 feet where they will be released to slowly drift down to the ground and become one with the Earth. We’ll print your hopes on biodegradable paper designed to compost. Send your “High Hopes” here or you can tweet them to us by using the hashtag #hhpSTEM. 

We had planned on launching May 17, 2018, but somewhat unusual spring rains have made the high desert dirt roads we rely on a bit sloppy for recovery. Our current launch date is June 1, 2018, weather permitting.

This year Virginia City High School students are designing the engineering and science payloads that will reach altitudes of 80,000 to more than 100,000 feet.

Every “high hopes” launch includes payloads to carry and release the world’s high hopes that are printed out on biodegradable paper. Past designs have attempted to be mechanical in nature using a timer or altimeter to trigger a motor to spring a latch and release the “hopes.” However no group has successfully completed that kind of design, usually because of class time constraints, so they end up with a payload that relies on the chaos that ensues post balloon burst as the payloads plummet to the ground (before the parachute gets enough atmosphere to slow things down) to open flaps on the sides and release the “hopes” … which works well, but engineering motors, Arduinos, pulleys and all is intriguing, so we’ll see what happens.

Engineering payload motor driven latch release for world’s “high hopes.”

Another group is looking into gluing seeds to some of the high hopes in order to spread some flowers around the desert. They are researching what seeds they can distribute that way (don’t want to plant invasive species) and have contacted the local authorities about their idea. They are developing a water soluble glue that also might provide some nutrition for the seeds as well.

Mixing a trial batch of bio-degradable glue.

 

 

 

 

 

 

A payload designed to see how sound is effected by the thin atmosphere at high altitudes is taking on a Star Wars theme. The plan is to play the theme music from Star Wars while a camera records the image, but more importantly the sound during flight through a speaker that is insulated from vibrating the payload, so the sound must travel via the air. Does the thin air effect the sound? 

 

 

 

 

 

 

 

 

This should be an interesting payload to fly!

 

 

 

Yet another group wants to test a design to protect plants from the freezing, dry conditions they’ll encounter during the flight (actually very much like conditions on Mars). They’ve set up a group of plants to launch and a identical set to stay on the ground to compare with. They are trying several different ways to insulate the seedlings and seeds they will launch.

 

 

 

 

 

 

 

 

 

 

 

Students have also set up a social media campaign including Twitter and Instagram to ask for others to submit their high hopes. Please send us your high hopes and we will launch them high into the stratosphere!

Learning is messy!

An Eclipse by Any Other Name is an Occultation

Neptune's Moon Triton will cast shadow on Earth traveling 37,000 MPH, SOFIA plans to catch it!

 

 

I’ve been posting lately about NASA’s SOFIA flying telescope (Stratospheric Observatory For Infrared Astronomy) and its upcoming mission to catch the occultation of Neptune’s moon, Triton. NASA has posted more information about the upcoming event and I’m sharing that here including a link to resources I put together to help others understand more about why scientists are excited about this occurrence.

From NASA:

“On Oct. 5, as Triton passes in front of a faraway star it will block the star’s light in an eclipse-like event called an occultation. During the celestial alignment, the team aboard the specially equipped Boeing 747SP aircraft will make observations of the distant star’s light as it passes through Triton’s atmosphere.

Triton has not passed in front of bright stars for many years, making occultation observations difficult. Now, as Triton passes in front of a bright star, the data collected by SOFIA’s 100-inch (2.5-meter) on board telescope and three powerful instruments will enable researchers to better study and characterize the moon’s atmosphere, including its temperature, pressure and density.” 

SOFIA is a modified Boeing 747SP. Note the large opening in the side that contains a 2.5 meter (100 inch) wide reflecting telescope.

And:

“Catching Triton’s shadow as it races across Earth’s surface at more than 37,000 mph (17 km/s) while the aircraft is traveling at Mach 0.85 (approximately 652 mph), is no small feat. To ensure that they are in the right place at the right time, researchers have made advanced observations of Triton and the star with multiple telescopes to determine the location of their shadow. From these precise calculations, SOFIA’s flight planners have designed a flight plan that will put the flying observatory in the center of the shadow for approximately two minutes as Triton aligns in front of the star.”

I put together a wiki page of resources that explain the where’s and whys of this event.

SOFIA will have to fly perpendicular through the shadow (so its telescope is pointing at Triton) that is moving at 37,000 MPH while it is flying at over 600 MPH … apparently some math is involved in figuring out just where to be and when to be there to make this work!

Learning is messy!!