Get off to a great start!

Beginning of the year lessons, activities!

I repost this selection most years because it is a popular post and because I found building the community in the classroom so crucial. Why wait? Start off right away giving students opportunities and experiences that lead to a collaborative atmosphere.

Beginning of the Year Classroom Learning Activities,” –  I posted last year and it explains some of my favorite activities and includes links to longer more explicative versions.

Every Piece of the Puzzle is Important” – is a great project that teaches simple word processing and printing skills while demonstrating how we are all stronger when we realize what strengths we each bring to the group.

The Important Book, A Writing Lesson” – is a very popular post on this blog. Not only is it a great way to teach paragraphing, I use it to teach writing blog posts but especially blog comments.

Have a great start to your year!

Learning is messy!

Classroom Blogging Options Post by Wes Fryer

Get blogging with your students this year!

When I’m asked what is the “biggest-bang-for-the-buck” technology learning tool for classroom use I still say blogging (so much so I co-wrote a book on blogging – see sidebar). Blogs can be writing and conversation, which by itself is awesome, but blogs are also places to post and share photos, video clips, podcasts, collaborate globally and so much more. They are also a powerful home/school connection which seems to be on everyone’s radar these days. I strongly advise anyone that wants to provide their students with a powerful learning tool, that you consider setting up a class blog this school year.

Having said that, I wanted to share a post I only wish I had the time to research and write. Fortunately my friend Wes Fryer took the time to do just that … and he did an awesome job of it. He shares about the blog platforms available and their strengths and weaknesses based on his own experience blogging, but also his students’ blogging experiences.

Wes titled his post, “Classroom Blogging Options (August 2015)” – check it out yourself and share it with others to help promote classroom blogging!

Learning is messy!

 

 

Welcome to the new look!

I explained a few weeks ago that “Learning Is Messy” was getting a new look and address, and here it is. There still might be a few updates and changes to come as I learn more about what has been wrought here. The old site was getting a bit clunky and unwieldy – blog theme updates would often lead to unwanted changes in appearance and function, and I was not happy with how my hosting company handled things at times.

So change is good, now I just have to deal with the changes, which shouldn’t be too hard. I have to give credit to Jim Beeghley who orchestrated the move to a new host and implementing the new blog theme. He got everything up and running before “turning the keys” over to me. He’ll probably get a few more help requests from me … I kind of feel like I’ve gone from driving a pick-up truck with an automatic transmission to a race car with a manual 6 speed … so I’ll probably strip the gears a few times … but I’ll get there. That’s part of “messy learning” after all!

Lots going on as one of the 6 school districts I serve has already gotten back from summer, and others will be back in a few weeks. Again, welcome to the new look!

Learning is messy!

 

Edutopia Post About the High Hopes Project!

A few weeks ago I was asked to submit a post for Edutopia (Supported by the George Lucas Educational Foundation) about our “High Hopes Project.” It was a challenge based on my schedule right now, but on the other hand it forced me to be more thoughtful in explaining what is a multi-layered project. I was restricted, thank goodness, to 800 words or I might still be writing. You can check out the post here. It does the best job so far (according to my biased opinion) of explaining the project.

 

 

Learning is messy!!!

Pathways To Space 1st Launch Day

Recently we obtained a Space Grant that has enabled us to offer a class we are calling “Pathways To Space.” It is a 32 hour/2 credit class for middle school science teachers.

During our 1st class teachers constructed their own tissue paper hot air balloons. By taking the class they qualify for free supplies to have their students build their own tissue balloons that will be launched at the Reno Balloon Races next September. IMG_3375 IMG_3369 IMG_3368

 

 

 

 

 

 

 

 

 

 
The second night of class this past Thursday they constructed solid rockets from kits, and water rockets constructed from 2 liter soda bottles, cardboard for fins, and clay for weight in the nose cone to keep them going straight. IMG_3414 IMG_3423

 

 

 

 

 

 

In later classes teachers will learn about high altitude ballooning and planes. Today we had our third class, which was an all day Saturday extravaganza. We met out at White Lake north of Reno, Nevada, to launch our balloons and rockets. Below I’m posting photos and  slow motion video of both a water rocket launch and a solid rocket launch. In addition here is a link to many photos and videos from our day.

IMG_3443

 

 

 

 

 

 

 

 

IMG_3445

 

 

 

 

Water Rocket launch



Solid rocket launch

After our launches we headed to the campus at the University of Nevada, Reno, and visited the Planetarium and several museums. Next we headed over to the Reno offices of the National Weather Service where Chris Smallcombe gave us a tour of the facilities.

IMG_3476

 

 

 

 

 

 

Next we observed the launch of a weather balloon. They launch 2 balloons every day – at 4:00 AM and 4:00 PM. The balloons climb to above 100,000 feet along with an instrument package that records temperature, humidity, air pressure and more. The instruments send their data back to the weather service in real time.

IMG_3472

IMG_3470

 

 

 

 

 

 

 

 

 

 

After watching the balloon rise out of sight we were done for the day. This Thursday we will learn about electromagnetic radiation and high altitude ballooning. We might even start to design and build the payloads we will launch to near space later in the month.

 

 

 

 

 

Learning is messy!

 

 

Online Presentation: STEM – What Does That Really Look Like In The Classroom

On Saturday, April 25, 2015, I’ll be delivering an online version of one of my most requested presentations: “STEM – What Does That Really Look Like In The Classroom.” I’ll share real STEM projects right from my classroom. The projects will showcase  integrated examples that demonstrate how hands-on STEM provides engaging and motivating opportunities for collaboration and problem solving that when coupled with students communicating and presenting their process and results leads to powerful language arts and math learning. This work isn’t shoehorned into your day, it becomes your day, at least for periods of time.

NSTA Virtual Conference STEM Today For a Better Tomorrow

My presentation is just one of many. The National Science Teachers Association (NSTA) is producing an entire day virtual conference on STEM they are calling, “STEM Today For A Better Tomorrow.” 

From their web page:

“The future is bright for careers in STEM. However, too many students do not have a strong foundation in science, technology, engineering, and mathematics to pursue careers in these fields. In the STEM Today For a Better Tomorrow virtual conference we make the case for the role that STEM education plays for students interested in following a STEM career.”

The conference begins at 10 am Eastern Time and offers a wide range of speakers and presentations. The agenda for the day with descriptions of the sessions is posted on the site as well. One I am looking forward to is offered by Captain Barrington Irving. I recently  co-taught a model hands-on STEM inquiry lesson to teachers demonstrating the power of integrating language arts, math and art. As part of that lesson teachers in the class read an article about the exploits of Captain Irving:

Barrington Irving“In 2007, Captain Barrington Irving became the youngest person to fly solo around the globe. On his 97-day journey, he flew 30,000 miles in a single-engine plane called Inspiration. “

AND –

“Barrington Irving Will set the stage for the conference making the case for STEM education as a path for students’ pursuit of STEM careers.” 

Note that attendance to the all day virtual conference costs $99 to non-NSTA members and $79 dollars for members. You can read a description of the conference and see the agenda for the day that begins at 10 am Eastern Time and continues until 6 pm Eastern Time.

Learning is messy!

 

 

 

The “High Hopes Project” Explained

This is cross posted at the “High Hopes Project” blog
Lake Tahoe to Pyramid Lake from about 29,000 meters (95,000 feet)

The “High Hopes Project” is designed to be a model global STEM learning project. But what is it really and how does it work? Who is involved? How can my students and I be involved?

Last year we dropped GoPro cameras 45 feet deep in Lake Tahoe and pulled them up to almost 30,500 meters (100,000 feet) attached to a high altitude weather balloon to investigate how that would work. No students were involved in that trial.

Well that has changed. We (see below) are planning launches from several Reno and Fernley, Nevada, area schools this spring. Tentative dates are the last week in April, and from crystal clear Lake Tahoe in June. These launches will include payloads designed by local students. At least 2 of the payloads will carry the “High Hopes” of the world to near space and release them. Teachers and their students (that’s you!) can participate by writing and submitting your “High Hopes via a Google Spreadsheet or via Twitter.

We are collecting “High Hopes” for your school, community and the world, from students and others around the globe – we’ve already received hundreds from local students, but also students from as far away as Norway and France.

Here are more specifics about the project including ways for you or anyone to join in:

Sparks High School students are designing and building a water pressure gauge to track water pressure from 45 meters (150 feet) deep in Lake Tahoe to the surface. An air pressure gauge will monitor air pressure to 30,500 meters (100,000 feet) or higher. Students from around the world will be invited to research to determine what will happen to the water and air pressure during flight, and we will share the data we bring back so they can assess their understanding.

Sparks High Students are also challenged to engineer a way to reel in the 45 meters (150 feet) of line with the cameras and water pressure gauge up to the bottom payload. Leaving the cameras dangling far below could cause instability during the flight, so this is an important engineering problem to solve. The students also designed the actual payloads to carry the “High Hopes” of the world up to 30,500 meters (100,000 feet), and then release the tiny strips of paper they will be printed on to spread in the atmosphere – Now they’ve turned those payloads over to Sparks Middle School students to install the release mechanism they are designing.

Sparks Middle School students will be learning about writing computer code and designing a system utilizing Ardunio micro-computers.  They will conduct low altitude tests using model rocketry to determine an effective way of accurately measuring altitude using the Arduino system and then use the knowledge gained from these tests to design a system to release the high hopes of the world at at least two different altitudes as the balloon is in flight.

Students at Cottonwood Elementary in Fernley (a K-4 school) are designing special high hopes to glide or helicopter to the ground – these high hopes will be launched at a lower altitude, around 6100 meters (20,000 feet) so the atmosphere is thick enough for them to take flight. They will also perform experiments utilizing bio-engineering to find a substance to treat the paper with so it decomposes as fast as possible once the “Hopes” hit the ground. The elementary students will utilize their new blogging skills and other means to encourage everyone to submit their “High Hopes.”

One payload will include colorful party balloons inflated to different sizes. We challenge students everywhere to research to determine what will happen to them as they rise through atmospheric layers to 30,500 meters (100,000 feet). Onboard cameras will record what occurs and we will share the photos/video obtained so students globally can see what transpired. In addition, we will monitor temperature and other data during the flights and share that data as well.

The High Hopes Project is planned as a model global STEM (Science, Technology, Engineering and Math) project so teachers, students and the community are better educated in the powerful learning a quality integrated STEM approach provides. There will be creative writing ideas, math and more offered along the way. These lesson ideas and challenges will be linked on our project Wiki page. Check back often to see new information and challenges.

You Can Participate too! Teachers and students (really anyone!) can participate by: 1) Brainstorming, writing and submitting their “High Hopes” for their school, community and the world. 2) Participating in the science, engineering and math challenges we offer. 3) Follow our progress via the various social networks we are utilizing to inform and include the world (see links below).

There are other aspects of this project that are developing and we will share later as well.

Additionally, we have partnered with the University of Nevada, Reno, Mechanical Engineering and Materials Science Departments. They are experts in launching high altitude balloons, but are also encouraging undergraduate and graduate level engineering students to work with and mentor students at Sparks High School, Sparks Middle School and Cottonwood Elementary School.

This is a collaborative project between Nevada’s Northwest Regional Professional Development Program, the 21st Century Division of WCSD, the Lyon County School District, the Washoe County School District, the University of Nevada, Reno,   and students from around the world.

Here are links to our online resources – this is how we are modelling the “T” part of STEM – these links will also provide you much more specific information about the project:

Our blog: http://highhopesproject.edublogs.org

Our Web Site: http://highhopesproject.net

Our Twitter page: https://twitter.com

Our Flickr page: https://www.flickr.com/photos/127331960@N04/sets/

Our YouTube Channel: https://www.youtube.com/channel/UCM6JGyKhW2OXYiY9gh3J-Lg/videos

Learning is messy!!!

Making and Taking Flight

When experienced using a truly integrated approach, STEM learning is, I believe, the most powerful language arts program there is. The reason so many still struggle with STEM is that they approach it as an “add-on” … something else they have to make time for instead of embracing it as a culture. Yes, it takes time to cultivate that culture where students have learned to work together to solve problems and make things. It also means changing how you run your classroom and you have to give up, at least some of the time, the siloing of subjects and your daily schedule.

Unfortunately, demonstrating and providing experiences for teachers that include even a smattering of the possibilities during a 75 – 90 minute presentation is quite possibly impossible. But we keep trying to do so because we keep being asked to. My boss wants me to set up some 16 hour classes next school year (I’m already overbooked for this year) that will provide more time to experience what that is like from the student point-of-view, so that is definitely on my radar for next year.

Yesterday we were asked again to do our best to make that connection between ELA and STEM at the local Reading Conference for teachers. Here is how we went about it:

We believe it is key to have teachers learn their ABC’s. Not as in the alphabet, but as in Activity Before Content. So we began with an activity. The science reading our students (actually the teachers in our session) would take on was about flight and specifically dealt with lift, drag, thrust and gravity. We did not front load the vocabulary as is common practice, instead we used the activity to give them schema.

We passed out a balsa wood prop plane to each group of 3 to 4 teachers and instructed them to put them together. We gave no other instructions.

We noted that every group actually read, discussed and followed the directions on the package! 🙂

Once finished, teachers were asked to discuss and write about the construction experience, then what ways their plane could be “adjusted” to achieve the longest flight possible. We had them share a few of their answers but made no comments on whether their ideas would truly make a difference. Then we found an empty hallway for the 50+ participants to fly the 18 planes we had passed out. We also gave them a 10 meter measuring tape and had then bring the science notebooks we had them make along, but again, did not tell them what to do with them if anything.

The groups staked out spots to fly and we observed intently.

Most groups decided to throw their planes after winding the propeller rubber band what seemed to be the “right number” of spins. One group launched their plane from the ground because they felt that throwing it wasn’t consistent and could skew the data they were collecting. Then we started to see groups were counting the number of turns of the propeller so that their data would be “more comparable.” Next some were making tweaks to the wing position and so on to achieve a straighter flight and more. So they were discovering things about flight and how their planes functioned through experience, NOT because we took class time to lecture and demonstrate the “right” way.

It was a 75 minute presentation, so that was all the time we had for flying. We returned to class and had them journal about their experience for 3 minutes or so and then did a quick debrief. During our discussion it was noted that these planes are not a perfect way to do inquiry science/engineering because there is no way to control all the variables. Even if you wind the propeller the same number of turns each time the way the rubber band winds up is different and could effect the flight. releasing the plane if you give it a toss is problematic because you can’t be sure you gave it the exact same toss and released it at the exact same angle. When it lands (usually crashes) the wings and tail get moved … did you put them back exactly where they were the last time? Launching from the ground is easier to control overall, but did you let go of the propeller and the plane at the same time and way each time …. and more … you get the idea. So this is a great and motivating way to teach the steps of doing inquiry, but just realize the data produced is slightly unreliable at best.

Note that if you did this activity in your classroom, what we did during the presentation would be how you would introduce the activity. You are just letting students have time to become familiar with how these things work. Next you would get into why this isn’t a perfect inquiry piece but ask them for ways to control the variables as best as possible so we can learn how to get the longest, straightest (or whatever you and they decide to learn about – maybe all of these and more). Perhaps you would agree to launch from the ground behind a line. Do you measure to where the plane ended up, or mark where it first hit the ground? All these decisions lead students to understand how inquiry is done … let them figure it out as much as possible with you playing the role of “reluctant guide” – only helping with advice or opinions when you judge you just have to to move things along. HAVE students take photos, video clips, take notes … even though they will balk at that to keep making flight after flight …. solid science and engineering require descriptive note taking and data collection.

 

Next we handed out some leveled science readers that had the same article about flight, with the same illustrations and charts, just written at different reading levels. Teachers were then instructed to read the article closest to their grade level (K-1, 2-3, 4-6, 6-9 or so) and take notes on the connections between their activity and what they learned from the reading. When they shared out teachers mentioned how the vocabulary was more interesting and meaningful to learn about because they had experienced them during the activity ( lift, drag, thrust and gravity). In addition because the article was about a flight around the world in a propeller powered plane they understood more of the issues the main character had experienced … and they were just more motivated to read it period because they had assembled and flown their own plane.


We quickly made the point that what they had just experienced in 40 minutes would easily be 1 to 2 weeks in the classroom with all the flights, data collection, journaling, creative writing possibilities, analyzing the data in math, re-enginnering to achieve longer or straighter or finding out what the “best” number of turns to put on the rubber band is and on and on. Imagine connecting with another class anywhere in the world doing the same inquiry and sharing data and discussing results and stories of the good, bad and ugly of what happened during all the flights. How could you bring art in? History? Guest speakers?

We next shared some of the connections to the Next generation Science Standards and shared some other resources and our time was up.

Learning is messy!!

 

Next Design Challenges For Students

Originally posted at the High Hopes Project Blog

Lots has happened since we last checked in with students at Sparks High School that are designing and engineering several of the payloads we will send up to 100,000 feet (33,000 meters). The students finished one design for releasing the world’s High Hopes. The plan is to solicit the world’s “Hopes” – (you can add your students’  “Hopes” here) print them out on small strips of paper that will biodegrade rapidly, release them at 100,000 feet or higher and then have them spread out over the world and become one with the Earth. The challenge is to make that happen under the severe conditions the payload will experience.

Above is the simple, lightweight design that includes a framework inside to mount a camera that will record the release of the “High Hopes,” as well as a latch to hold it closed. Next we will turn the payload over to Sparks Middle School students to design a way to open the payload at just the right time. The high school students are also working on a second release payload that will release some of the “Hopes” at a lower altitude – local elementary students are designing some of the “Hopes” so they will glide or helicopter down … but that has to happen at a different altitude for reasons we will leave to you and your students to figure out. 🙂

Next we shared the other engineering design problems the high school students will take on. One of our launches will be from Lake Tahoe. We were working out how to do that last year when we had this failure and this success, Now we plan to drop cameras over 100 feet deep in the lake and part of that camera package will include a water pressure gauge the students have to design and build (they will also need to become familiar with Noble Gas Law). One of the cameras will track the gauge to record the water pressure from it’s deepest point to the surface of the lake. An air pressure gauge will also be deployed on the payloads above the surface. We will share the data from those and other readings … your students can inquire to figure out what will happen to those readings during the flight as well as temperature and other readings.

In addition, they have to reel the 100+ feet (33+ meters) of line the cameras and gauge are attached to back up to the other payloads so they aren’t dangling, possibly causing instability. So after they break the surface of the lake, those need to be retracted.

As a model STEM project, one of our goals is to set up collaborations not only between students at various schools, but also between students and engineers. The Mechanical Engineering and Materials Science departments at the University of Nevada, Reno, are experts in high altitude ballooning, and they have agreed to mentor our student participants. So on this visit we brought along Sierra Adibi,  a junior in the mechanical engineering department. Her minor is in unmanned autonomous systems … so we felt she just might be a good fit. 🙂

Above: Sierra answered their questions and gave them some background and ideas on how they might utilize the Noble Gas Law in their water pressure gauge design. She also noted materials they were utilizing and asked questions about what they needed to consider for the conditions their designs have to deal with. Such a great opportunity to have students connect with people really working in the field … to see what others are doing. We’re planning to have Sierra come back to talk to the students more about the note-taking and writing pieces required for this kind of work. Their teacher, Mr.Walsh mentioned that students were struggling somewhat with those skills and Sierra offered to return soon with examples.

Finally we also gave them a problem to start on we will share at a later date. However it does tie-in nicely with the paper airplane design project Mr. Walsh already has planned in the coming month. Needless to say, by the end of the discussion it was hard to tell who was more excited, the students or us! With all the challenges the high school students are given, they are turning over some of the design and building over to the middle school and elementary students as needed. The whole world can join in by learning about the characteristics of our atmosphere and water, drawing informed conclusions and then using the data and media we will share after our launches to see if their conclusions were correct.  We’ll share more about how anyone can be part of this project in future posts.

What are your “High Hopes!?”

Next we meet with the middle school and elementary students to inform them of their challenges.

Learning is messy!